回 帖 发 新 帖 刷新版面

主题:求约瑟夫环数学算法问题~~

我在网上看了一个约瑟夫环的数学解决方法,但是看不太明白,
如下:

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号


我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开
始):
  k  k+1  k+2  ... n-2, n-1, 0, 1, 2, ... k-2
并且从k开始报0。

现在我们把他们的编号做一下转换:
k     --> 0
k+1   --> 1
k+2   --> 2
...
...
k-2   --> n-2
k-1   --> n-1

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根
据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:x'=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的
情况 ---- 这显然就是一个倒推问题!好了,思路出来了,下面写递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式
f[1]=0;
f[i]=(f[i-1]+m)%i;  (i>1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,
我们输出f[n]+1

由于是逐级递推,不需要保存每个f[i],程序也是异常简单: 
#include <stdio.h>
main()
{
  int n, m, i, s=0;
  printf ("N M = "); scanf("%d%d", &n, &m);
  for (i=2; i<=n; i++) s=(s+m)%i;
  printf ("The winner is %d\n", s+1);


--------------------------
我想问的是,x'=(x+k)%n到底表示的是什么,又是怎么推出来的?

回复列表 (共1个回复)

沙发

类似把数组看成一个环。

然后。。 ( location + move ) % mod = 环中的某一节点

循环队列?

我来回复

您尚未登录,请登录后再回复。点此登录或注册