回 帖 发 新 帖 刷新版面

主题:[原创]一元高次方程求解(递归、降次、牛顿迭代)

敬请大家多提宝贵意见。

回复列表 (共23个回复)

沙发

我是怀着对楼主的极大信任,才胆战心惊地打开了这个已编译的程序。
这个程序给学生可能有用。
建议把响应TAB键的顺序调整一下,我按到2次方的时候,就跳到确定去了。

板凳

好的。我修改修改看。

感谢信任。

3 楼

厉害 我都想学医学了

4 楼

请问楼主,能否提供源代码?

5 楼

能啊,要不能提供那就太自私了。
但是因为提改进意见的人很少,所以还很不完善。

6 楼

楼主很厉害,光看源代码就看得我晕头转向的!
是不是为了防止被破解呀?不过,这种代码好像很难被模仿的。

7 楼

不是啊,源代码应该是比较好读的。你可以省略不看90%的代码(那些都是防止出错的,可事实上,最后还是有部分错误我分析不出来,还存在),主干是十分简单的。

8 楼

能否在此作些介绍

9 楼

每求导一次,函数就降一阶。只到成为一次方程,就可以直接求解。
然后依次回代,低次方程的解是相邻高一次方程的极值点。
两相邻极值点函数的符号不一致,其中有解,否则放弃。
有解段,用截弦法逐步逼近真解。
这些解是更高一阶方程的极值点………………只到回到原方程得到我们要求的解为止。

10 楼

另外,原来计划用牛顿迭代逼近真解(其效率比较高),但是在很多情况下收敛很难判断,后来改成了截弦法。

我来回复

您尚未登录,请登录后再回复。点此登录或注册