补码概述

  求给定数值的补码表示分以下两种情况:

  (1)正数的补码

  与原码相同。

  【例1】+9的补码是00001001。(备注:这个+9的补码说的是用8位的2进制来表示补码的,补码表示方式很多,还有16位2进制补码表示形式,以及32位2进制补码表示形式等。)

  (2)负数的补码

  负数的补码是对其原码逐位取反,但符号位除外;然后整个数加1。

  同一个数字在不同的补码表示形式里头,是不同的。比方说-15的补码,在8位2进制里头是11110001,然而在16位2进制补码表示的情况下,就成了1111111111110001。在这篇补码概述里头涉及的补码转换默认了把一个数转换成8位2进制的补码形式,每一种补码表示形式都只能表示有限的数字。

  【例2】求-7的补码。

  因为给定数是负数,则符号位为“1”。

  后七位:-7的原码(10000111)→按位取反(11111000)(负数符号位不变)→加1(11111001)

  所以-7的补码是11111001。

  已知一个数的补码,求原码的操作分两种情况:

  (1)如果补码的符号位为“0”,表示是一个正数,其原码就是补码。

  (2)如果补码的符号位为“1”,表示是一个负数,那么求给定的这个补码的补码就是要求的原码。

  再举一个例子:求-64的补码

  +64:01000000

  11000000

  【例3】已知一个补码为11111001,则原码是10000111(-7)。

  因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”。

  其余七位1111001取反后为0000110;

  再加1,所以是10000111。

  在“闲扯原码、反码、补码”文件中,没有提到一个很重要的概念“模”。我在这里稍微介绍一下“模”

  的概念:

  “模”是指一个计量系统的计数范围。如时钟等。计算机也可以看成一个计量机器,它也有一个计量范

  围,即都存在一个“模”。例如:

  时钟的计量范围是0~11,模=12。

  表示n位的计算机计量范围是0~2^(n)-1,模=2^(n)。

  “模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的

  余数。任何有模的计量器,均可化减法为加法运算。

  例如: 假设当前时针指向10点,而准确时间是6点,调整时间可有以下两种拨法:

  一种是倒拨4小时,即:10-4=6

  另一种是顺拨8小时:10+8=12+6=6

  在以12模的系统中,加8和减4效果是一样的,因此凡是减4运算,都可以用加8来代替。

  对“模”而言,8和4互为补数。实际上以12模的系统中,11和1,10和2,9和3,7和5,6和6都有这个特

  性。共同的特点是两者相加等于模。

  对于计算机,其概念和方法完全一样。n位计算机,设n=8,所能表示的最大数是11111111,若再

  加1称为100000000(9位),但因只有8位,最高位1自然丢失。又回了00000000,所以8位二进制系统的

  模为2^8。 在这样的系统中减法问题也可以化成加法问题,只需把减数用相应的补数表示就可以

  了。把补数用到计算机对数的处理上,就是补码。

  另外两个概念

  一的补码(one's complement) 指的是正数=原码,负数=反码

  而二的补码(two's complement) 指的就是通常所指的补码。

  小数补码求法:一种简单的方式,符号位保持1不变,数值位从右边数第一个1及其右边的0保持不变,左边按位取反。

  (3).补码的绝对值(称为真值)

  【例4】-65的补码是10111111

  若直接将10111111转换成十进制,发现结果并不是-65,而是191。

  事实上,在计算机内,如果是一个二进制数,其最左边的位是1,则我们可以判定它为负数,并且是用补码表示。

  若要得到一个负二进制数的绝对值(称为真值),只要各位(包括符号位)取反,再加1,就得到真值。

  如:二进制值:10111111(-65的补码)

  各位取反:01000000

  加1:01000001(+65的补码)

  代数加减运算

  1、补码加法

  [X+Y]补 = [X]补 + [Y]补

  【例5】X=+0110011,Y=-0101001,求[X+Y]补

  [X]补=00110011 [Y]补=11010111

  [X+Y]补 = [X]补 + [Y]补 = 00110011+11010111=00001010

  注:因为计算机中运算器的位长是固定的,上述运算中产生的最高位进位将丢掉,所以结果不是

  100001010,而是00001010。

  2、补码减法

  [X-Y]补 = [X]补 - [Y]补 = [X]补 + [-Y]补

  其中[-Y]补称为负补,求负补的方法是:负数的绝对值的原码所有位按位取反;然后整个数加1。 (恢复本来解释。请路人真正理解并实际验证后再修改。以免误导大众。另外,例6不具典型性,新增例7。)

  【例6】1+(-1) [十进制]

  1的原码00000001 转换成补码:00000001

  -1的原码10000001 转换成补码:11111111

  1+(-1)=0

  00000001+11111111=00000000

  00000000转换成十进制为0

  0=0所以运算正确。

  【例7增】-7-(-10) [十进制]

  -7的补码:11111001

  -10的补码:11110110

  -(-10):按位取反再加1实际上就是其负值的补码,为00001010

  -7 - (-10)= -7 + 10 = 3

  11111001+00001010 = 00000011

  转换成十进制为3

  3、补码乘法

  设被乘数【X】补=X0.X1X2……Xn-1,乘数【Y】补=Y0.Y1Y2……Yn-1,

  【X*Y】补=【X】补×【Y】补,即乘数(被乘数)相乘的补码等于补码的相乘。

  补码的代数解释

  任何一个数都可以表示为-a=2^(n-1)-2^(n-1)-a;

  这个假设a为正数,那么-a就是负数。而根据二进制转十进制数的方法,我们可以把a表示为:a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2),第(n-1)位为符号位不计算在内。

  这里k0,k1,k2,k(n-2)是1或者0,而且这里设a的二进制位数为n位,即其模为2^(n-1),而2^(n-1)其二项展开是:1+2^0+2^1+2^2+……+2^(n-2),而式子:-a=2^(n-1)-2^(n-1)-a中,2^(n-1)-a代入a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2)和2^(n-1)=1+2^0+2^1+2^2+……+2^(n-2)两式,2^(n-1)-a=(1-k(n-2))*2^(n-2)+(1-k(n-3))*2^(n-3)+……+(1-k2)*2^2+(1-k1)*2^1+(1-k0)*2^0+1,而这步转化正是取反再加1的规则的代数原理所在。因为这里k0,k1,k2,k3……不是0就是1,所以1-k0,1-k1,1-k2的运算就是二进制下的取反,而为什么要加1,追溯起来就是2^(n-1)的二项展开式最后还有一项1的缘故。而-a=2^(n-1)-2^(n-1)-a中,还有-2^(n-1)这项未解释,这项就是补码里首位的1,首位1在转化为十进制时要乘上2^(n-1),这正是n位二进制的模。

  不能贴公式,所以看起来很麻烦,如果写成代数式子看起来是很方便的。

  注:n位二进制,最高位为符号位,因此表示的数值范围-2^(n-1) ——2^(n-1) -1,所以模为2^(n-1)。上面提到的8位二进制模为2^8是因为最高位非符号位,表示的数值范围为0——2^8-1

  QQ 744437114

  疯狂软件官网:www.fkjava.org

  疯狂java视频 android视频:http://www.fkjava.org/video.html